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Introduction to Cori



What is different about Cori?



What is different about Cori?

Edison (Ivy-Bridge):
● 12 Cores Per CPU
● 24 Virtual Cores Per CPU

● 2.4-3.2 GHz

● Can do 4 Double Precision 
Operations per Cycle (+ multiply/add)

● 2.5 GB of Memory Per Core

● ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):
● 60+ Physical Cores Per CPU
● 240+ Virtual Cores Per CPU

● Much slower GHz

● Can do 8 Double Precision 
Operations per Cycle (+ multiply/add)

● < 0.3 GB of Fast Memory Per Core
         < 2 GB of Slow Memory Per Core

● Fast memory has ~ 5x DDR4 
bandwidth
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What is different about Cori?

Two Big Changes:

1. More on node parallelism. More cores, bigger vectors

2. Small amount of very fast memory. 
(similar-ish amounts of traditional DDR)



Key Concepts



MPI Vs. OpenMP For Multi-Core Programming
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Typically less memory overhead/duplication. 
Communication often implicit, through cache 
coherency and runtime
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PARATEC Use Case For OpenMP

PARATEC computes parallel 
FFTs across all processors. 

Involves MPI all-to-all 
communication (small 
messages, latency bound).

Reducing the number of MPI 
tasks in favor OpenMP 
threads makes large 
improvement in overall 
runtime.



Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the 
above loop can be done concurrently.

  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo



Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the 
above loop can be done concurrently.

  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads



Things that prevent vectorization in your code

Compilers want to “vectorize” your loops whenever possible. But sometimes they 
get stumped. Here are a few things that prevent your code from vectorizing:

Loop dependency:

Task forking:

  do i = 1, n
      a(i) = a(i-1) + b(i) 
  enddo

  do i = 1, n
      if (a(i) < x) cycle
      if (a(i) > x) … 
  enddo



Memory Bandwidth

do i = 1, n

     do j = 1, m

          c = c + a(i) * b(j)

     enddo

enddo

Consider the following loop:

Assume, n & m are very large such that a & b don’t fit into 
cache.

Then,

During execution, the number of loads From DRAM is 

n*m + n



Memory Bandwidth

do i = 1, n

     do j = 1, m

          c = c + a(i) * b(j)

     enddo

enddo

Consider the following loop: Assume, n & m are very large such that a & b don’t fit into cache.

Assume, n & m are very large such that a & b don’t fit into 
cache.

Then,

During execution, the number of loads From DRAM is 

n*m + n

Requires 8 bytes loaded from DRAM per FMA (if supported).  Assuming 100 GB/s bandwidth on 
Edison, we can at most achieve 25 GFlops/second (2 Flops per FMA)

Much lower than 460 GFlops/second peak on Edison node. Loop is memory bandwidth bound.



Roofline Model For Edison



Improving Memory Locality

Loads From DRAM:

n*m + n 

do jout = 1, m, block

     do i = 1, n

          do j = jout, jout+block

               c = c + a(i) * b(j)

           enddo

     enddo

enddo

Loads From DRAM:

m/block * (n+block) 
= n*m/block + m

do i = 1, n

     do j = 1, m

          c = c + a(i) * b(j)

     enddo

enddo

Improving Memory Locality. Reducing bandwidth required.



Improving Memory Locality Moves you to the Right on the Roofline



Optimization Strategy



Optimizing Code For Cori is like:
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Use IPM to Measure Communication Time

https://www.nersc.gov/users/software/debugging-and-profiling/ipm/

# wallclock                  953.272       29.7897       29.6092       29.9752
# user                        837.25       26.1641         25.71         26.92
# system                        60.6       1.89375          1.52          2.59
# mpi                        264.267       8.25834       7.73025       8.70985
# %comm                                    27.7234       25.8873       29.3705

#                            [time]       [calls]        <%mpi>      <%wall>
# MPI_Send                   188.386        639616         71.29        19.76
# MPI_Wait                   69.5032        639616         26.30         7.29
# MPI_Irecv                  6.34936        639616          2.40         0.67
# MPI_Barrier              0.0177442            32          0.01         0.00
# MPI_Reduce              0.00540609            32          0.00         0.00

Use IPM and Darshan to 
Measure and Remove 
Communication and IO 
Bottlenecks from Code

https://www.nersc.gov/users/software/debugging-and-profiling/ipm/
https://www.nersc.gov/users/software/debugging-and-profiling/ipm/


Use Darshan to Measure IO Time/Performance

https://www.nersc.gov/users/software/debugging-and-profiling/darshan

https://www.nersc.gov/users/software/debugging-and-profiling/darshan
https://www.nersc.gov/users/software/debugging-and-profiling/darshan


Measuring Your Memory Bandwidth Usage (VTune) 

Measure memory 
bandwidth usage in 
VTune. (Next Talk)

Compare to Stream 
GB/s. 

If 90% of stream, you are 
memory bandwidth 

bound.

If less, more tests need 
to be done. 



Are you memory or compute bound? Or both?
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Are you memory or compute bound? Or both?

Run Example in 
“Half Packed” 

Mode

 aprun -n 24 -N 12 - S 6 ... VS  aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run 
has access to more bandwidth 

If your performance changes, you are at least partially memory bandwidth bound



Are you memory or compute bound? Or both?

aprun --p-state=2400000 ... VS aprun --p-state=2200000 ...

Reducing the CPU speed slows down computation, but doesn’t reduce 
memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example 
at “Half Clock” 

Speed



So, you are Memory Bandwidth Bound?

What to do?

1. Try to improve memory locality, 
          cache reuse 

2. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Cori. 

Profit by getting ~ 5x more bandwidth GB/s.



So, you are Compute Bound?

What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major 

OpenMP regions.

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization in 
vtune. 

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5



So, you are neither compute nor memory bandwidth bound?

You may be memory latency bound (or you may be spending all your time in IO and Communication). 

If running with hyper-threading on Edison improves performance, you *might* be 
latency bound:

If you can, try to reduce the number of memory requests per flop by accessing 
contiguous and predictable segments of memory and reusing variables in cache as 
much as possible.

On Cori, each core will support up to 4 threads. Use them all.

 aprun -j 2 -n 48 ….  aprun -n 24 ….VS



BerkeleyGW Case Study



BerkeleyGW Use Case

★ Big systems require more memory. Cost scales as Natoms^2 to store the data.
★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 

each MPI task has a memory overhead.
★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with 

enough memory.  90% of the computing capability is lost.

…



 Targeting Intel Xeon Phi Many Core Architecture

1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized. 

Example: Optimization steps for Xeon Phi Coprocessor

Refactor to Have 3 
Loop Structure:

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Add OpenMP

Ensure 
Vectorization



Final Loop Structure

ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for vectorization. 

Original inner loop. 
Too small to vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.

!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown
    ...
    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff
        ...
        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
        scht = scht + scha(ig)

      enddo ! loop over g
      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo   

    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo



Hybrid MPI-OpenMP Scaling Improvements.

Epsilon Code

* Major Improvement between 1.0 and 1.1
* Trading MPI tasks for OpenMP threads, yields 
improved performance (mostly in MPI 
communication costs) and allows scaling to higher 
core counts.

Sigma Code



The End


